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Abstract

Remote Procedure Call (RPC) is a widely used abstraction
for cloud computing. The programmer specifies type informa-
tion for each remote procedure, and a compiler generates stub
code linked into each application to marshal and unmarshal
arguments into message buffers. Increasingly, however,
application and service operations teams need a high degree of
visibility and control over the flow of RPCs between services,
leading many installations to use sidecars or service mesh
proxies for manageability and policy flexibility. These sidecars
typically involve inspection and modification of RPC data
that the stub compiler had just carefully assembled, adding
needless overhead. Further, upgrading diverse application
RPC stubs to use advanced hardware capabilities such as
RDMA or DPDK is a long and involved process, and often
incompatible with sidecar policy control.

In this paper, we propose, implement, and evaluate a novel
approach, where RPC marshalling and policy enforcement are
done as a system service rather than as a library linked into
each application. Applications specify type information to the
RPC system as before, while the RPC service executes policy
engines and arbitrates resource use, and then marshals data
customized to the underlying network hardware capabilities.
Our system, mRPC, also supports live upgrades so that both
policy and marshalling code can be updated transparently to ap-
plication code. Compared with using a sidecar, mRPC speeds
up a standard microservice benchmark, DeathStarBench, by
up to 2.5x while having a higher level of policy flexibility and
availability.

1 Introduction

Remote Procedure Call (RPC) is a fundamental building
block of distributed systems in modern datacenters. RPC
allows developers to build networked applications using a
simple and familiar programming model [10], supported
by several popular libraries such as gRPC [26], Thrift [84],
and eRPC [39]. The RPC model has been widely adopted
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Figure 1: Architectural comparison between current (RPC
library + sidecar) and our proposed (RPC as a managed
service) approaches.

in distributed data stores [19, 41, 83], network file sys-
tems [24, 80], consensus protocols [68], data-analytic
frameworks [2,12,16,25,55,82,94,98], cluster schedulers and
orchestrators [30,50], and machine learning systems [1,65,72].
Google found that roughly 10% of its datacenter CPU cycles
are spent just executing gRPC library code [42]. Because of
its importance, improving RPC performance has long been
a major topic of research [7, 8, 10, 14,39,52,63,81,87,95,96].

Recently, application and network operations teams have
found a need for rapid and flexible visibility and control over
the flow of RPCs in datacenters. This includes monitoring
and control of the performance of specific types of RPCs [62],
prioritization and rate limiting to meet application-specific
performance and availability goals, dynamic insertion of
advanced diagnostics to track user requests across a network
of microservices [22], and application-specific load balancing
to improve cache effectiveness [6], to name a few.

The typical architecture is to enforce policies in a sidecar—a
separate process that mediates the network traffic of the
application RPC library (Figure 1a). This is often referred to as
a service mesh. A number of commercial products have been
developed to meet the need for sidecar RPC proxies, such as



Envoy [18],Istio [32], HAProxy [29], Linkerd [53], Nginx [67],
and Consul [15]. Although some policies could theoretically
be supported by a feature-rich RPC runtime linked in with each
application, that can slow deployment—Facebook recently
reported that it can take months to fully roll out changes to
one of its application communication libraries [21]. One use
case that requires rapid deployment is to respond to a new
application security threat, or to diagnose and fix a critical
user-visible failure. Finally, many policies are mandatory
rather than discretionary—the network operations team may
not be able to trust the library code linked into an application.
Example mandatory security policies include access control,
authentication/encryption [15], and prevention of known
exploits in widely used network protocols such as RDMA [79].

Although using a sidecar for policy management is func-
tional and secure, it is also inefficient. The application RPC
library marshals RPC parameters at runtime into a buffer ac-
cording to the type information provided by the programmer.
This buffer is sent through the operating system network stack
and then forwarded back up to the sidecar, which typically
needs to parse and unwrap the network, virtualization, and RPC
headers, often looking inside the packet payload to correctly
enforce the desired policy. It then re-marshals the data for trans-
port. Direct application-level access to network hardware such
as RDMA or DPDK offers high performance but precludes
sidecar policy control. Similarly, network interface cards are
increasingly sophisticated, but it is hard for applications or
sidecars to take advantage of those new features, because mar-
shalling is done too high up in the network stack. Any change to
the marshalling code requires recompiling and rebooting each
application and/or the sidecar, hurting end-to-end availability.
In short, existing solutions can provide good performance, or
flexible and enforceable policy control, but not both.

In this paper, we propose a new approach, called RPC as a
managed service, to address these limitations. Instead of sepa-
rating marshalling and policy enforcement across different do-
mains, we combine them into a single privilege and trusted sys-
tem service (Figure 1b) so that marshalling is done after policy
processing. In our prototype, mRPC for managed RPC, the priv-
ileged RPC service runs at user level communicating with the
application through shared memory regions [4,8,58]. However,
mRPC could also be integrated directly into the operating sys-
tem kernel with a dynamically replaceable kernel module [61].

Our goals are to be fast, support flexible policies, and
provide high availability for applications. To achieve this, we
need to address several challenges. First, we need to decouple
marshalling from the application RPC library. Second, we
need to design a new policy enforcement mechanism to
process RPCs efficiently and securely, without incurring
additional marshalling overheads. Third, we need to provide a
way for operators to specify/change policies and even change
the underlying transport implementation without disrupting
running applications.

We implement mRPC, the first RPC framework that follows

the RPC as a managed service approach. Our results show that
mRPC speeds up DeathStarBench [23] by up to 2.5 X, in terms
of mean latency, compared with combining state-of-art RPC
libraries and sidecars, i.e., gRPC and Envoy, using the same
transport mechanism. Larger performance gains are possible
by fully exploiting network hardware capabilities from within
the service. In addition, mRPC allows for live upgrades of
its components while incurring negligible downtime for
applications. Applications do not need to be re-compiled or
rebooted to change policies or marshalling code. mRPC has
three important limitations. First, data structures passed as
RPC arguments must be allocated on a special shared-memory
heap. Second, while we use a language-independent protocol
for specifying RPC type signatures, our prototype implemen-
tation currently only works with applications written in Rust.
Finally, our stub generator is not as fully featured as gRPC.
In this paper, we make the following contributions:

* A novel RPC architecture that decouples mar-
shalling/unmarshalling from RPC libraries to a
centralized system service.

¢ An RPC mechanism that applies network policies and
observability features with both security and low perfor-
mance overhead, i.e., with minimal data movement and
no redundant (un)marshalling. The mechanism supports
live upgrade of RPC bindings, policies, transport, and
marshalling without disrupting running applications.

* A prototype implementation of mRPC along with an eval-
uation on both synthetic workloads and real applications.

2 Background

In this section, we discuss the current RPC library architecture.
We then discuss the emerging need for manageability and how
manageability is implemented with existing RPC libraries.

2.1 Remote Procedure Call

To use RPC, a developer defines the relevant service interfaces
and message types in a schema file (e.g., gRPC .proto file). A
protocol compiler will translate the schema into program stubs
that are directly linked with the client and server applications.
To issue an RPC at runtime, the application simply calls
the corresponding function provided by the stub; the stub
is responsible for marshalling the request arguments and
interacting with the transport layer (e.g., TCP/IP sockets or
RDMA verbs). The transport layer delivers the packets to
the remote server, where the stub unmarshals the arguments
and dispatches the RPC request to a thread (eventually
replying back to the client). We refer to this approach as
RPC-as-a-library, since all RPC functionality is included in
user-space libraries that are linked with each application. Even
though the first RPC implementation [10] dates back to the
1980s, modern RPC frameworks (e.g., gRPC [26], eRPC [39],
Thrift [84]) still follow this same approach.



A key design goal for RPC frameworks is efficiency. Google
and Facebook have built their own efficient RPC frameworks,
gRPC and Apache Thrift. Although primarily focused on porta-
bility and interoperability, gRPC includes many efficiency-
related features, such as supporting binary payloads. Academic
researchers have studied various ways to improve RPC effi-
ciency, including optimizing the network stack [45,69,99], soft-
ware hardware co-design [39,41], and overload control [14].

As network link speeds continue to scale up [77], RPC
overheads are likely to become even more salient in the future.
This has led some researchers to advocate for direct application
access to network hardware [5,39,73,99], e.g., with RDMA
or DPDK. Although low overhead, kernel bypass is largely
incompatible with the need for flexible and enforceable layer
7 policy control, as we discuss next. In practice, multiple
security weaknesses in RDMA hardware have led most cloud
vendors to opt against providing direct access to RDMA by
untrusted applications [48,49,58,79,95,101].

2.2 The Need for Manageability

As RPC-based distributed applications scale to large, complex
deployment scenarios, there is an increasing need for improved
manageability of RPC traffic. We classify management needs
into three categories: 1) Observability: Provide detailed
telemetry, which enables developers to diagnose and optimize
application performance. 2) Policy Enforcement: Allow
operators to apply custom policies to RPC applications and
services (e.g., access control, rate limits, encryption). 3)
Upgradability: Support software upgrades (e.g., bug fixes
and new features) while minimizing downtime to applications.

One natural question to ask is: is it possible to add these
properties without changing existing RPC libraries? For
observability and policy enforcement, the state-of-the-art
solution is to use a sidecar (e.g., Envoy [18] or Linkerd [53]).
A sidecar is a standalone process that intercepts every packet
an application sends, reconstructing the application-level data
(i.e., RPC), and applying policies or enabling observability.
However, using a sidecar introduces substantial performance
overhead, due to redundant RPC (un)marshalling. This RPC
(un)marshalling, for example, in gRPC+Envoy, including
HTTP framing and protobuf encoding, accounts for 62-73%
overhead in the end-to-end latency [102]. In our evaluation
(§7), using a sidecar increases the 99th percentile RPC latency
by 180% and decreases the bandwidth by 44%. Figure la
shows the (un)marshalling steps invoked as an RPC traverses
from a client to a server and back. Using a sidecar triples the
number of (un)marshalling steps (from 4 to 12). In addition,
the sidecar approach is largely incompatible with the emerging
trend of efficient application-level access to network hardware.
Using sidecars means data buffers have to be copied between
the application and sidecars, reducing the benefits of having
zero-copy kernel-bypass access to the network.

Finally, using sidecars with application RPC libraries does
not completely solve the upgradability issue. While policy

can often be changed dynamically (depending on the feature
set of the sidecar implementation), marshalling and transport
code is harder to change. To fix a bug in the underlying RPC
library, or merely to upgrade the code to take advantage
of new hardware features, we need to recompile the entire
application (and sidecar) with the patched RPC library and
reboot. gRPC has a monthly or two-month release cycle for
bug fixes and new features [27]. Any scheduled downtime has
to be communicated explicitly to the users of the application
or has to be masked using replication; either approach can lead
to complex application life-cycle management issues.

We do not see much hope in continuing to optimize this RPC
library and sidecar approach for two reasons. First, a strong
coupling exists between a traditional RPC library and each
application. This makes upgrading the RPC library without
stopping the application difficult, if not impossible. Second,
there is only weak or no coupling between an RPC library and
a sidecar. This prevents the RPC library and the sidecar from
cross-layer optimization.

Instead, we argue for an alternative architecture in which
RPC is provided as a managed service. By decoupling RPC
logic, e.g., (un)marshalling, transport interface, from the
application, the service can simultaneously provide high
performance, policy flexibility, and zero-downtime upgrades.

3 Overview

Our system, mRPC, realizes the RPC-as-a-managed-service
abstraction while maintaining similar end-to-end semantics
as traditional RPC libraries (e.g., gRPC, Thrift). The goals for
mRPC are to be fast, support flexible policy enforcement, and
provide high availability for applications.

Figure 2 shows a high-level overview of the mRPC
architecture and workflow, breaking it down into three major
phases: initialization, runtime, and management. The mRPC
service runs as a non-root, user-space process with access to
the necessary network devices and a shared-memory region for
each application. In each of the phases, we focus on the view of
asingle machine thatis running both the RPC client application
and the mRPC service. The RPC server may also run alongside
an mRPC service. In this case, mRPC-specific marshalling
can be used. However, we also support flexible marshalling
to enable mRPC applications to interact with external peers
using well-known formats (e.g., gRPC). In our evaluation, we
focus on cases where both the client and server employ mRPC.

The initialization phase extends from building the applica-
tion to how the application binds to a specific RPC interface.
@ Similar to gRPC, users define a protocol schema. The
mRPC schema compiler uses this to generate stub code to
include in their application. We illustrate this using a key-value
storage service with a single Get function. 2) When the
application is deployed, it connects with the mRPC service
running on the same machine and specifies the protocol(s)
of interest, which are maintained by the generated stub. 3)
The mRPC service also uses the protocol schema to generate,
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Figure 2: Overview of the mRPC workflow from the perspective of the users (and their applications) as well as infrastructure

operators.

compile, and dynamically load a protocol-specific library
containing the marshalling and unmarshalling code for that
application’s schemas”. This dynamic binding is a key enabler
for mRPC to act as a long-running service, handling arbitrary
applications (and their RPC schemas). *

Atthis point, we enter the runtime phase in which the applica-
tion begins to invoke RPCs. Our approach uses shared memory
between the application and mRPC, containing both control
queues as well as a data buffer. (@) The application protocol
stub produced by the mRPC protocol compiler can be called
like a traditional RPC interface, with the exception that data
structures passed as arguments or as return values must be allo-
cated on a special heap in the shared data buffer. As an example,
we show an excerpt of Rust-like pseudocode for invoking
the Get function. (8) Internally, the stub and mRPC library
manage RPC calls and replies in the control queues along with
allocations and deallocations in the data buffer. (6) The mRPC
service operates over the RPCs through modular engines that
are composed to implement the per-application datapaths
(i.e., sequence of RPC processing logic); each engine is
responsible for one type of task (e.g., application interface, rate
limiting, transport interface). Engines do not contain execution
contexts, but are rather scheduled by runtimes in mRPC that
correspond to kernel-level threads; during their execution,
engines read from input queues, perform work, and enqueue
outputs. External-facing engines (i.e., frontend, transport) use
asynchronous control queues, while all other engines are exe-
cuted synchronously by a runtime. Application control queues
are contained in shared memory with the mRPC service.

This architecture, along with dynamic binding, enables
mRPC to operate over RPCs rather than packets, avoiding
the high overhead of traditional sidecar-based approaches.
Additionally, the modular design of mRPC’s processing logic
enables mRPC to take advantage of fast network hardware

2Note that such libraries may be prefetched and/or cached to optimize the
startup time.
3The dashed box of "Stub" and "libApp" means they are generated code.

(e.g., RDMA and smartNICs) in a manner that is transparent
to the application. A key challenge, which we will address in
§4.2, is how to securely enforce operator policies over RPCs
in shared memory while minimizing data copies.

Finally, mRPC aims to improve the manageability of RPCs
by infrastructure operators. Here, we zoom out to focus on
the processing logic across all applications served by an
mRPC service. (7) Operators may wish to apply a number of
different policies to RPCs made by applications, whether on an
individual basis (e.g., rate limiting, access control) or globally
across applications (e.g., QoS). mRPC allows operators to
add, remove, update, or reconfigure policies at runtime. This
flexibility extends beyond policies to include those responsible
for interacting with the network hardware. A key challenge,
which we will address in §4.3, is in supporting the live upgrade
of mRPC engines without interrupting running applications
(and while managing engines sharing memory queues).

4 Design

In this section, we describe how mRPC provides dynamic
binding, efficient policy and observability support, live
upgrade, and security.

4.1 Dynamic RPC Binding

Applications have different RPC schemas, which ultimately
decide how an RPC is marshalled. In the traditional RPC-
as-a-library approach, a protocol compiler generates the
marshalling code, which is linked into the application. In
our design, the mRPC service is responsible for marshalling,
which means that the application-specific marshalling code
needs to be decoupled from an RPC library and run inside the
mRPC service itself. Failing to ensure this separation would
allow arbitrary code execution by a malicious user.
Applications directly submit the RPC schema (and not
marshalling code) to the mRPC service. The mRPC service
generates the corresponding marshalling code, then compiles
and dynamically loads the library. Thus, we rely on our mRPC
service code generator to produce the correct marshalling code



for any user-provided RPC schema. For the initial handshake
between an RPC client and an RPC server, the two mRPC
services check that the provided RPC schemas match, and if
not, the client’s connection is rejected.

There are three remaining questions. First, what are
the responsibilities of the in-application user stub and
mRPC library? In mRPC, applications rely on user stubs to
implement the abstraction as specified in their RPC schema.
This means we still need to generate the glue code to maintain
the traditional application programming interface. Our
solution is to provide a separate protocol schema compiler,
which is untrusted and run by application developers, to
generate the user stub code that does not involve marshalling
and transport. The application RPC stub (with the help of
the mRPC library) creates a message buffer that contains
the metadata of the RPC, with typed pointers to the RPC
arguments, on the shared memory heap. The message is placed
on a shared memory queue, which will be processed by the
mRPC service. The receiving side works in a similar way.

Second, does this approach increase RPC connect/bind
time? Implemented naively, this design will increase the RPC
connect/bind time because the mRPC service has to compile
the RPC schema and load the resulting marshalling library
when an RPC client first connects to a corresponding server
(or equivalently when an RPC server binds to the service).
However, this latency is not fundamental to our design, and
we can mitigate it in the following way. The mRPC service
accepts RPC schemas before booting an application, as a form
of prefetching. Given a schema, it compiles and caches the
marshalling code. At the time of RPC connect/bind, the mRPC
service simply performs a cache lookup based on the hash
of the RPC schema. If it exists within the cache, the mRPC
service will load the associated library; otherwise, the mRPC
service will invoke the compiler to generate (and subsequently
cache) the library. This reduces the connect/bind time from
several seconds to several milliseconds.

Third, when new applications arrive, do existing appli-
cations face downtime? The multi-threaded mRPC service is
a single process that serves many RPC applications; however,
the marshalling engines for different RPC applications are
not shared. They are in different memory addresses and can
be (un)loaded independently. We will describe in §4.3 how to
load/unload engines without disrupting running applications.

4.2 Efficient RPC Policy Enforcement and Observability

We have one key idea to allow efficient RPC policy enforce-
ment and observability: senders should marshal once (as
late as possible), while receivers should unmarshal once (as
early as possible). On the sender side, we want to support
policy enforcement and observability directly over RPCs
from the application, and then marshal the RPC into packets.
The receiver side is similar: packets should be unmarshalled
into RPCs, applying policy and observability operations,
and then delivered directly to the application. Compared to

the traditional RPC-as-a-library approach with sidecars, this
eliminates the redundant (un)marshalling steps (see Figure 1).

Data: DMA-capable shared memory heaps. Our design is
centered around a dedicated shared memory heap between each
application and the mRPC service. (Note that this heap is not
shared across applications.) Applications directly create data
structures, which may be used in RPC arguments, in a shared
memory heap with the help of the mRPC library. Each applica-
tion has a separate shared memory region, which provides iso-
lation between (potentially mutually distrusting) applications.
The mRPC library also includes a standard slab allocator for
managing object allocation on this shared memory. If there is
insufficient space within the shared memory, the slab allocator
will request additional shared memory from the mRPC service
and then map itinto the application’s address space. The mRPC
service has access to the shared memory heap, allowing it to
execute RPC processing logic over the application’s RPCs, but
also maintains a private memory heap for necessary copies.
Figure 3 shows an example workflow that includes access
control for a key-value store service. Having the data structures
directly in the shared memory allows an application to provide
pointers to data, rather than the data itself, when submitting
RPCs to the mRPC service. We call the message sent from an
application to the mRPC service an RPC descriptor. If there are
multiple RPC arguments, the RPC descriptor points to an array
of pointers (each pointing to a different argument on the heap).
Let us say we have an ACL policy that rejects an RPC if the
key matches a certain string. The mRPC service first copies
the argument (i.e., key), as well as all parental data structures
(i.e., GetReq), onto its private heap. This is to prevent time-of-
use-to-time-of-check (TOCTOU) attacks. Since applications
have access to DM A-capable shared memory at all times, an
application could modify the content in the memory while the
mRPC service is enforcing policies. Copying arguments is
a standard mitigation technique, similar to how OS kernels
prevents TOCTOU attacks by copying system call arguments
from user- to kernel-space. This copying only needs to happen
if the policy behavior is based on the content of the RPC. We
demonstrate in §7.2 that even with such copying, mRPC’s
overhead for an ACL policy is much lower than gRPC + Envoy.
The RPC descriptor is modified so that the pointer to the copied
argument now points to the private heap. On the receiver side,
the TOCTOU attack is not relevant, but we need to take care not
to place RPCs directly in shared memory. If there is a receive-
side policy that depends on RPC argument values, the mRPC
service first receives the RPC data into a private heap; it copies
the RPC data into the shared heap after policy processing. This
prevents the application from reading RPC data that should
have been dropped or modified by the policies. Note that we
can bypass this copy when processing does not depend on RPC
argument values (e.g., rate limits). During ACL policy enforce-
ment, the RPC is dropped if the key argument is contained in a
blocklist. Note that if an RPC is dropped, any further process-
ing logic is never executed (including marshalling operations).
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Finally, at the end of the processing logic, the transport
adapter engine executes. mRPC currently supports two
types of transport: TCP and RDMA. For TCP, mRPC uses
the standard, kernel-provided scatter-gather (iovec) socket
interface. For RDMA, mRPC uses the scatter-gather verb
interface, allowing the NIC to directly interact with buffers
on the shared (or private) memory heaps containing the RPC
metadata and arguments. For both TCP and RDMA, mRPC
provides disjoint memory blocks to the transport layer directly,
eliminating excessive data movements.*

Control: Shared-memory queues. To facilitate efficient
communication between an application and the mRPC service,
we use shared memory control queues. mRPC allocates two
unidirectional queues for sending and receiving requests from
an application to the mRPC service. The requests contain RPC
descriptors, which reference arguments on the shared memory
heap. The mRPC service always copies the RPC descriptors
applications put in the sending queue to prevent TOCTOU
attacks. mRPC provides two options to poll the queues: 1)
busy polling, and 2) eventfd-based adaptive polling. In busy
polling, both the application-side mRPC library and the mRPC
service busy poll on their ends of the queues. In the eventfd
approach, the mRPC library and the mRPC service sends
event notifications after enqueuing to an empty queue. After
receiving a notification, the queue is drained (performing the
necessary work) before subsequently waiting on future events.
The eventfd approach saves CPU cycles when queues are
empty. Other alternative solutions may involve dynamically
scaling up (or down) the number of threads used to busy poll by
the mRPC service; however, we chose the eventfd approach
for its simplicity. In our evaluation, we use busy polling for
RDMA and eventfd-based adaptive polling for TCP.

Memory management. We provide a memory allocator in
the mRPC library for applications to directly allocate RPC
data structures to be sent on a shared memory heap. The
allocator invokes the mRPC service to allocate shared memory
regions on behalf of the application (similar to how a standard

4For RDMA, if the number of disjoint memory blocks exceeds the limit
of NIC’s capability to encapsulate all blocks in one RDMA work request,
mRPC coalesces the data into a memory block before transmission. This
is because sending a single work request (even with a copy) is faster than
sending multiple smaller work requests on our hardware.

heap manager calls mmap or sbrk to allocate memory from an
OS kernel). We need to use a specialized memory allocator for
RPC messages (and their arguments), since RPCs are shared
between three entities: the application, the mRPC service, and
the NIC. A memory block is safe to be reclaimed only when
it will no longer be accessed by any entity.

We adopt a notification-based mechanism for memory
management. On the sender side, the outgoing messages are
managed by the mRPC library within the application. On
the receiver side, the incoming messages are managed by the
mRPC service. When the application no longer accesses a
memory block occupied by outgoing messages, the memory
block will not be reclaimed until the library receives a noti-
fication from mRPC service that the corresponding messages
are already sent successfully through the NIC (similar to how
zero-copy sockets work in Linux). Incoming messages are put
in buffers on a separate read-only shared heap. The receiving
buffers can be reclaimed when the application finishes pro-
cessing (e.g., when the RPC returns). To support reclamation
of receive buffers, the mRPC library notifies the mRPC service
when specific messages are no longer in use by the application.
Notifications for multiple RPC messages are batched to im-
prove performance. If the receiver application code wishes to
preserve or modify the incoming data, it must make an explicit
copy. Although this differs from traditional RPC semantics,
in our implementation of Masstree and DeathStarBench we
found no examples where the extra copy was necessary.

Cross-datapath policy engines. mRPC supports engines that
operate over multiple datapaths, which may span multiple ap-
plications. For instance, any global policy (e.g., QoS) will need
to operate over all datapaths (see §5). For this type of engine,
we instantiate replicas of the engine for each datapath that it
applies to. Replicas can choose to either communicate through
shared state, which requires managing contention across
runtimes, or support runtime-local state that is contention-free.

4.3 Live Upgrades

Although our modular engine design for the mRPC service
is similar to Snap [58] and Click [47], we arrive at very
different designs for upgrades. Click does not support live
upgrades, while Snap executes the upgraded process to run
alongside the old process. The old process serializes the
engine states, transfers them to the new process, and the
new process restarts them. This means that even changing
a single line of code within a single Snap engine requires a
complete restart for all Snap engines. This design philosophy
is fundamentally not compatible with mRPC, as we need
to deal with new applications arriving with different RPC
schemas, and thus our upgrades are more frequent. In addition,
we want to avoid fate sharing for applications: changes to an
application’s datapath should not impact the performance of
other applications. Ultimately, Snap is a network stack that
does not contain application-specific code, where as mRPC
needs to be application-aware for marshalling RPCs.



We implement engines as plug-in modules that are dynam-
ically loadable libraries. We design a live upgrade method that
supports upgrading, adding, or removing components of the
datapath without disrupting other datapaths.

Upgrading an engine. To upgrade one engine, mRPC first
detaches the engine from its runtime (preventing it from being
scheduled). Next, mRPC destroys and deallocates the old
engine, but maintains the old engine’s state in memory; note
that the engine is detached from its queues and not running
at this time. Afterwards, mRPC loads the new engine and
configures its send and receive queues. The new engine
starts with the old engine’s state. If there is a change in the
data structures of the engine’s state, the upgraded engine is
responsible for transforming the state as necessary (which the
engine developer must implement). Note that this also applies
to any shared state for cross-datapath engines. The last step
is for mRPC to attach the new engine to the runtime.

Changing the datapath. When an operator changes the data-
path to add or remove an engine, this process now involves the
creation (or destruction) of queues and management of in-flight
RPCs. Changes that add an engine are straightforward, since it
only involves detaching and reconfiguring the queues between
engines. Changes that remove an engine are more complex,
as some in-flight RPCs may be maintained in internal buffers;
for example, a rate limiter policy engine maintains an internal
queue to ensure that the output queue meets a configured rate.
Engine developers are responsible for flushing such internal
buffers to the output queues when the engines are removed.

Multi-host upgrades or datapath changes. Some engine
upgrades or datapath changes that involve both the sender and
the receiver hosts need to carefully manage in-flight RPCs
across hosts. For example, if we want to upgrade how mRPC
uses RDMA, both the sender and the receiver have to be up-
graded. In this scenario, the operator has to develop an upgrade
plan that may involve upgrading an existing engine to some
intermediate, backward-compatible engine implementation.
The plan also needs to contain the upgrade sequence, e.g., up-
grading the receiver side before the sender side. Our evaluation
demonstrates such a complex live upgrade, which optimizes the
handling of many small RPC requests over RDMA (see §7.3).

4.4 Security Considerations

We envision two deployment models for mRPC: (1) a cloud
tenant uses mRPC to manage its RPC workloads (similar
to how sidecars are used today); (2) a cloud provider uses
mRPC to manage RPC workloads on behalf of tenants. In both
models, there are two different classes of principals: operators
and applications. Operators are responsible for configuring the
hardware/virtual infrastructure, deploying the mRPC service,
and setting up policies that mRPC will enforce. Applications
run on an operator’s infrastructure, interacting with the mRPC
service to invoke RPCs. Applications trust operators, along
with all privileged software (e.g., OS) and hardware that the

operators provide; both applications and operators trust our
mRPC service and protocol compiler. In both deployment
models, applications are not trusted and may be malicious
(e.g., attempt to circumvent network policies).

In the first deployment model, mRPC service runs on top of a
virtualized network that is dedicated to the tenant. Running ar-
bitrary policy and observability code inside the mRPC service
cannot attack other tenants’ traffic since inter-tenant isolation
is provided by the cloud provider. In the second deployment
model, our current prototype does not support running tenant-
provided policy implementation inside mRPC service. How to
safely integrate tenant-provided policy implementation and a
cloud provider’s own policy implementation is a future work.

From the application point of view, we want to ensure
that mRPC provides equivalent security guarantees as
compared to today’s RPC library and sidecar approach,
which we discuss in terms of: 1) dynamic binding and 2) policy
enforcement. Our dynamic binding approach involves the gen-
eration, compilation, and runtime loading of a shared library
for (un)marshalling application RPCs. Given that the compiled
code is based on the application-provided RPC schema, this
is a possible vector of attack. The mRPC schema compiler is
trusted with a minimal interface: other than providing the RPC
schema, applications have no control on the process of how
the marshalling code is generated. We open source our imple-
mentation of the compiler so that it can be publicly reviewed.

As for all of our RPC processing logic, policies are enforced
over RPCs by operating over their representations in shared
memory control queues and data buffers. With a naive shared
memory implementation, this introduces a vector of attack by
exploiting a time-of-check to time-of-use (TOCTOU) attack;
for instance, the application could modify the RPC message
after policy enforcement but before the transport engine
handles it. In mRPC, we address this by copying data into an
mRPC-private heap prior to executing any policy that operates
over the content of an RPC (as opposed to metadata such as the
length). Similarly, received RPCs cannot be placed in shared
memory until all policies have been enforced, since otherwise
applications could see received RPCs before policies have a
chance to drop (or modify) them. Shared memory regions are
maintained by the mRPC service on a per-application basis
to provide isolation.

5 Advanced Manageability Features

mRPC’s architecture creates an opportunity for advanced man-
ageability features such as cross-application RPC scheduling.
In this section, we present two such features that we developed
on our policy engine framework to demonstrate the broader
utility of our RPC-as-a-managed-service architecture.

Feature 1: Global RPC QoS. mRPC allows centralized RPC
scheduling of cross-application workloads based on a global
view of current outstanding RPCs. For example, mRPC can en-
force a policy that prioritizes RPCs with earliest deadlines [86]
across applications to support latency SLO or prioritizes



latency-sensitive workloads [101]. One challenge here is that
a naive implementation may attempt to apply the QoS policy
for datapaths spread over multiple runtimes (i.e., execution
thread contexts). This would require the (replicated) policy
engines on each datapath to share the state on outstanding
RPCs, and thus impose synchronization overheads. Therefore,
we adopt a similar strategy as used in the Linux kernel to apply
the QoS policy on a per-runtime basis, which instead can use
runtime-local storage without the need for synchronization. In
our implementation, we support a QoS strategy that prioritizes
small RPCs based on a configurable threshold size.

Feature 2: Avoiding RDMA performance anomalies. It
is well known that RDMA workloads may not fully utilize
the capability of a specific RDMA NIC without fine-tuning,
and that particular traffic patterns can even cause performance
anomalies [40,49] (e.g., low RDMA throughput, pause frame
storms). Previous work such as ScaleRPC [13] and Flock [63]

have proposed techniques to utilize the RNIC more efficiently.

However, their approaches are library-based and only work
for single applications; therefore, they do not handle scenarios
in which the combination of multiple application workloads
causes poor RDMA performance. mRPC’s architecture
enables us to have a global view of all RDMA requests and
to avoid such performance anomalies.

We implement a global RDMA scheduler inside the
RDMA transport engine, which translates RPC requests into
RDMA messages and sends them to the RDMA NIC. In our
implementation, we focus on addressing the performance
degradation from interspersed small and large scatter-gather

elements (which may be across RPCs as well as applications).

We fuse such elements together with an explicit copy with an
upper bound of 16 KB for the size of the fused element.

6 Implementation

mRPC is implemented in 32K lines of Rust: 3K lines for
the protocol compiler, 6K for the mRPC control plane, 12K

for engine implementations, and 11K for the mRPC library.

The mRPC control plane is part of the mRPC service that
loads/unloads engines.

The mRPC control plane is not live-upgradable. The
mRPC library is linked into applications and is thus also not
live-upgradable. We do not envision the need to frequently
upgrade these components because they only implement
the high-level, stable APIs, such as shared memory queue
communication and (un)loading engines.

Engine interface. Table | presents the essential API functions
that all engines must implement. Each engine represents some
asynchronous computation that operates over input and output

queues via doWork, which is similar in nature to Rust’s Future.

mRPC uses a pool of runtime executors to drive the engines by
calling doWork, where each runtime executor corresponds to
a kernel thread. We currently implement a simple scheduling
strategy inspired by Snap [58]: engines can be scheduled to

Operations
doWork(in:[Queue], out:[Queue])
Operate over one or more RPCs available on input queues.
decompose(out:[Queue]) — State
Decompose the engine to its compositional states.
(Optionally output any buffered RPCs)
restore(State) — Engine
Restore the engine from the previously decomposed state.

Table 1: mRPC Engine Interface.

a dedicated or shared runtime on start. In addition, runtimes
with no active engines will be put to slept and release CPU
cycles. The engines also implement APIs to support live
upgrading: decompose and restore. In decompose, the
engine implementation is responsible for destructing the
engine and creating a representation of the final state of the
engine in memory, returning a reference to mRPC. mRPC
invokes restore on the upgraded instance of the engine,
passing in a reference to the final state of the old engine. The
developer is responsible for handling backward compatibility
across engine versions, similar to how application databases
may be upgraded across changes to their schemas.

Transport engines. We abstract reliable network commu-
nication of messages into transport engines, which share
similar design philosophy with Snap [58] and TAS [45]. We
currently implement two transport engines: RDMA and TCP.
Our RDMA transport engine is implemented based on OFED
libibverbs 5.4, while our TCP transport engine is built on
Linux kernel’s TCP socket.

mRPC Library. Modern RPC libraries allow the user to
specify the RPC data types and service interface through a
language-independent schema file (e.g., protobuf for gRPC,
thrift for Apache Thrift). mRPC implements support for
protobuf and adopts similar service definitions as gRPC,
except for gRPC’s streaming API. mRPC also integrates
with Rust’s async/await ecosystem for ease of asynchronous
programming in application development.

To create an RPC service, the developer only needs to
implement the functions declared in the RPC schema. The
dependent RPC data types are automatically generated and
linked with the application by the mRPC schema compiler. The
mRPC library handles all the rest, including task dispatching,
thread management, and error handling. To allow applications
to directly allocate data in shared memory without changing
the programming abstraction, we implement a set of shared
memory data structures that expose the same rich API as
Rust’s standard library. This is done by replacing the memory
allocation of data structures such as Vec and String with the
shared memory heap allocator.

7 Evaluation

We evaluate mRPC using an on-premise testbed of servers
with two 100 Gbps Mellanox Connect-X5 RoCE NICs and
two Intel 10-core Xeon Gold 5215 CPUs (running at 2.5 GHz



base frequency). The machines are connected via a 100 Gbps
Mellanox SN2100 switch. Unless specified otherwise, we
keep a single in-flight RPC to evaluate latency. To benchmark
goodput and RPC rate, we let each client thread keep 128
concurrent RPCs on TCP and 32 concurrent RPCs on RDMA.

7.1 Microbenchmarks

We first evaluate mRPC’s performance through a set of
microbenchmarks over two machines, one for the client and
the other for the server. The RPC request has a byte-array
argument, and the response is also a byte array. We adjust the
RPC size by changing the array length. RPC responses are an
8-byte array filled with random bytes. We compare mRPC with
two state-of-the-art RPC implementations, eRPC and gRPC
(v1.48.0). We deploy Envoy (v1.20) in HTTP mode to serve as
asidecar for gRPC. We use mRPC’s TCP and RDMA backends
to compare with gRPC and eRPC, respectively. There is no
existing sidecar that supports RDMA. To evaluate the perfor-
mance of using a sidecar to control eRPC traffic, we implement
a single-thread sidecar proxy using the eRPC interface. We
keep applications running for 15 seconds to measure the result.

Small RPC latency. We evaluate mRPC’s latency by issuing
64-byte RPC requests over a single connection. Table 2
shows the latency for small RPC requests. Note that since
the marshalling of small messages is fast on modern CPUs,
the result in the table remains stable even when the message
size scales up to 1 KB. We use netperf and ib_read_lat to
measure raw round-trip latency.

mRPC achieves median latency of 32.8 us for TCP and
7.6 us for RDMA. Relative to netperf (TCP) or araw RDMA
read, mRPC adds 11.8 or 5.1 ps to the round-trip latency. This
is the cost of the mRPC abstraction on top of the raw transport
interface (e.g., socket, verbs).

We also evaluate latency in the presence of sidecar
proxies. The sidecars do not enforce any policies, so we are
only measuring the base overhead. Our results show that
adding sidecars substantially increases the RPC latency. On
gRPC, adding Envoy sidecars more than triples the median
latency. The result is similar with eRPC. On mRPC, having
a NullPolicy engine (which simply forwards RPCs) in the
mRPC service has almost no effect on latency, increasing the
median latency only by 300 ns.

Comparing the full solution (mRPC with policy versus
gRPC/eRPC with proxy), mRPC speeds up the median latency
by 6.1x (i.e., 33.4 us against 203.4 us) and the 99th percentile
tail latency by 5.8 x. On RDMA, mRPC speeds up eRPC by
1.3x and 1.4x in terms of median and tail latency (respec-
tively). This is because the communication between the eRPC
app and its proxy goes through the NIC, which triples the cost
in the end-host driver (including the PCle latency). In contrast,
mRPC’s architecture shortcuts this step with shared memory.

In addition, to separate the performance gain from system
implementation difference, we evaluate the latency of mRPC
with full gRPC-style marshalling (protobuf encoding and

Transport Solution Median Latency (us) P99 Latency (us)

Netperf 21.0 32.0

gRPC 63.0 90.3

TCP mRPC 32.8 38.7
gRPC+Envoy 203.4 251.1

mRPC+NullPolicy 334 433
mRPC+NullPolicy+HTTP+PB 49.8 61.9

RDMA read 2.5 2.8

eRPC 3.6 4.1

RDMA mRPC 7.6 8.7
eRPC+Proxy 113 15.6

mRPC+NullPolicy 7.9 9.1

Table 2: Microbenchmark [Small RPC latency]: Round-trip
RPC latencies for 64-byte requests and 8-byte responses.

HTTP/2 framing) in the presence of NullPolicy engines as
an ablation study. Under this setting, compared with gRPC
+ Envoy, mRPC speeds up the latency by 4.1 x in terms of both
median and tail latency. We also observe that the mRPC frame-
work does not introduce significant overhead. Even with the
cost of protobuf and HTTP/2 encoding, mRPC still achieves
slightly lower latency compared with standalone gRPC. In
mRPC, we can choose a customized marshalling format, be-
cause we know the other side is also an mRPC service. In other
cases, e.g., when interfacing with external traffic or dealing
with endianness differences, we can still apply full-gRPC style
marshalling. When mRPC is configured to use full-gRPC
style marshalling, we only need to pay (un)marshalling costs
between mRPC services. For gRPC + Envoy, in addition to
the (un)marshalling costs between Envoy proxies, the commu-
nication between applications and Envoy proxies also needs
to pay this (un)marshalling cost. In the remaining evaluations,
we will use mRPC’s customized marshalling protocol. More
results using gRPC-style marshalling are shown in §A. 1.

Large RPC goodput. The client and server in our goodput
test use a single application thread. The left side of Figure 4
shows the result. From this point on, when we discuss mRPC’s
performance, we focus on the performance of mRPC that has
at least a NullPolicy engine in place to fairly compare with
sidecar-based approaches.

mRPC speeds up gRPC + Envoy and eRPC + Proxy, by
3.1x and 9.3 x, respectively, for 8KB RPC requests. mRPC is
especially efficient for large RPCs”, for which (un)marshalling
takes a higher fraction of CPU cycles in the end-to-end RPC
datapath. Having a sidecar substantially hurts RPC goodput
both for TCP and RDMA. In particular, for RDMA, intra-host
roundtrip traffic through the RNIC might contend with
inter-host traffic in the RNIC/PCle bus, halving the available
bandwidth for inter-host traffic. mRPC even outperforms
gRPC (without Envoy). mRPC is fundamentally more efficient
in terms of marshalling format: mRPC uses iovec and
incurs no data movement. §A.1 shows an ablation study
that demonstrates that even if mRPC uses a full gRPC-style
marshalling engine, mRPC outperforms gRPC + Envoy due
to a reduction in the number of (un)marshalling steps.

CPU overheads. To understand the mRPC CPU overheads,
we measure the per-core goodput. The results are shown on
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Figure 5: Microbenchmark [RPC rate and scalability]:
Comparison of small RPC rate and CPU scalability. The bars
show the RPC rate. The error bars show the 95% confidence
interval.

the right side of Figure 4. mRPC speeds up gRPC + Envoy and
eRPC + Proxy, by 3.8 x and 9.3 x, respectively. This means
mRPC is much more CPU-efficient than gRPC + Envoy and
eRPC + Proxy. eRPC (without a proxy) is quite efficient, but
converges to mRPC’s efficiency as RPC size increases.

RPC rate and scalability. We evaluate mRPC’s small RPC
rate and its multicore scalability. We fix the RPC request size
to 32 bytes and scale the number of client threads. We use
the same number of threads for the server as the client, and
each client connects to one server thread. Figure 5 shows the
RPC rates when scaling from 1 to 8 user threads. All the tested
solutions scale well. mRPC’s RPC rates scale by 5.1x and

7.2x, on TCP and RDMA, from a single thread to 8 threads.

As areference, gRPC scales by 4.3 x, gRPC + Envoy scales by

SStandalone eRPC exhibits relatively lower goodput on RoCE than on
Infiniband. According to the eRPC paper [39], eRPC should achieve 75 Gbps
on Infiniband for SMB RPCs.
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Figure 6: Efficient Support for Network Policies. The RPC
rates with and without policy are compared. The bars of w/o
Limit and w/o ACL for gRPC show its throughput when the
sidecar is bypassed. The error bars show the 95% confidence
interface.

3.9%, and eRPC scales by 6.5 x. mRPC achieves 0.43 Mrps on
TCP and 6.5 Mrps on RDMA with 8 threads. gRPC + Envoy
only has 0.09 Mrps, so mRPC outperforms it by 5x. We do
not evaluate eRPC + proxy, because our eRPC proxy is only
single-threaded. When we run eRPC + proxy with a single
thread, it achieves 0.51 Mrps. So even if eRPC + proxy scales
linearly to 8 threads, mRPC still outperforms it.

7.2 Efficient Policy Enforcement

We use two network policies as examples to demonstrate
mRPC’s efficient support for RPC policies: (1) RPC rate
limiting and (2) access control based on RPC arguments. RPC
rate limiting allows an operator to specify how many RPCs
a client can send per second. We implement rate limiting as
an engine using the token bucket algorithm [91]. Our access
control policy inspects RPC arguments and drops RPCs based
on a set of rules specified by network operators. These two
network policies differ greatly from traditional rate limiting
and access control, which only limit network bandwidth and
can only operate on packet headers.

We compare rate limit enforcement using an mRPC policy
versus using Envoy’s rate limiter on gRPC workloads. To
evaluate the performance overheads, we set the limit to infinity
so that the actual RPC rate is never above the limit (allowing
us to observe the overheads). Figure 6a shows the RPC rate
with and without the rate limits. gRPC’s RPC rate drops
immediately from 49K to 25K. This is because having a
sidecar proxy (Envoy) introduces substantial performance
overheads. For mRPC, the RPC rate stays the same at 82K.
This is because having a policy introduces minimal overheads.
The extra policy only adds tens to hundreds of extra CPU
instructions on the RPC datapath.

We evaluate access control on a hotel reservation application
in DeathStarBench [23]. The service handles hotel reservation
RPC requests, which include the customer’s name, the check-
in date, and other arguments. The service then returns a list of
recommended hotel names. We set the access control policy
to filter RPCs based on the customerName argument in the
request. We use a synthetic workload containing 99% valid
and 1% invalid requests. We again compare our mRPC policy
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against using Envoy to filter gRPC requests. We implement the
Envoy policy using WebAssembly. gRPC’s rate drops from
50K to 13K. This is because of the same sidecar overheads and
now Envoy has to further parse the packets to fetch the RPC
arguments. On mRPC, the performance drop is much smaller,
from 84K to 79K. Note that, on mRPC, the performance over-
head of introducing access control is larger than rate limiting.
For access control, the mRPC service has to copy the relevant
field (i.e., customerName) to the private heap to prevent TOC-
TOU attacks on the sender side and has to copy the RPC from
a private heap to the shared heap on the receiver side.

7.3 Live Upgrade

We demonstrate mRPC’s ability to live upgrade using two
scenarios.

Scenario 1. During our development of mRPC, we realized
that using the RDMA NIC’s scatter-gather list to send multiple
arguments in a single RPC can significantly boost mRPC’s
performance. In this approach, even when an RPC contains
arguments that are scattered in virtual memory, we can send
the RPC using a single RDMA operation (ibv_post_send).
We use these two versions of our RDMA transport engine
to demonstrate that mRPC enables such an upgrade without
affecting running applications. Note that all other evaluations
already include this RDMA feature. This upgrade involves
both the client side’s mRPC service and the server side’s
mRPC service, because it involves how RDMA is used
between machines (i.e., transport adapter engine). gRPC and
eRPC cannot support this type of live upgrade.

We run two applications (App A and App B). Both applica-
tions are sending 32-byte RPCs, and the responses are 8§ bytes.
A and B share the mRPC service on the server side. A’s and B’s
RPC clients are on different machines. We keep 8 concurrent
RPCs for B, forcing it to send at a slower rate, while using 32
for A. We first upgrade the server side to accept arguments
as a scatter-gather list, and we then upgrade the client side of
A. Figure 7a shows the RPC rate of A and B. When the server
side upgrades, we observe a negligible effect on A’s and B’s
rate. Neither A nor B needs recompilation or rebooting. When
A’s client side’s mRPC service is upgraded, A’s performance
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Figure 8: DeathStarBench: Mean latency of in-application
processing and network processing of microservices. The
latency of a microservice includes RPC calls to other
microservices. The frontend latency represents complete
end-to-end latency.

increases from 480K to 860K. B’s performance is not affected
at all because B’s client side’s mRPC service is not upgraded.

Scenario 2. Enforcing network policies has performance
overheads, even when they do not have any effect. For example,
enforcing a rate limit of an extremely large throttle rate still
introduces performance overheads just for tracking the current
rate using token buckets. mRPC allows policies to be removed
at runtime, without disrupting running applications.

We use the same rate limiting setup from §7.2 but on top
of RDMA transport. Figure 7b shows the RPC rate. We start
from not having the rate limit engine. We then load the rate
limit engine and set the throttled rate to S00K. The RPC rate
immediately becomes S00K. We then set the throttled rate to
be infinite, and the rate becomes 840K. After we detach the
rate limit engine, the rate becomes 890K.

Takeaways. There are two overall takeaways from these
experiments. First, mRPC allows upgrades to the mRPC
service without disrupting running applications. Second,
live upgrades allow for more flexible management of RPC
services, which can be used to enable immediate performance
improvements (without redeploying applications) or dynamic
configuration of policies.

7.4 Real Applications

We evaluate how the performance benefits of mRPC transform
into end-to-end application-level performance metrics.

DeathStarBench. We use the hotel reservation service from
the DeathStarBench [23] microservice benchmark suite. The
reference benchmark is implemented in Go with gRPC and
Consul [15] (for service discovery). Our mRPC prototype
currently only supports Rust applications, and we thus port the
application code to Rust for comparison. We use the same open-
source services such as memcached [59] and MongoDB [64].

We distribute the HTTP frontend and the microservices on
four servers in our testbed. The monolithic services (mem-
cached, MongoDB) are co-located with the microservices that
depend on them. We use a single thread for each of the microser-
vices and the frontend. Further, we deploy an Envoy proxy as a
sidecar on each of the servers (with no active policy). The pro-



Median Latency P99 Latency = Throughput
eRPC 16.8 us 21.7 ps 8.7 MOPS
mRPC 22.5pus 33.1us 7.0 MOPS

Table 3: Masstree analytics: Latency and the achieved
throughput for GET operations. MOPS is Million Operations
Per Second.

vided workload generator [23] is used to submit HTTP requests
to the frontend. For a fair comparison, we also implemented a
Rust version of the benchmark with Tonic [93], which is the de
facto implementation of gRPC in Rust. We deploy the mRPC
and Tonic implementations on bare metal, while the reference
Go suite runs in Docker containers with a host network (which
introduces negligible performance overheads compared to us-
ing bare metal [103]). All three solutions are based on TCP. We
issue 20 requests per second for 250 seconds and record the la-
tency of each request, breaking it down into the in-application
processing time and network processing time for each microser-
vice involved. In our evaluation, the dynamic bindings of the
user applications are already cached in mRPC service, so the
time to generate the bindings is not included in the result.

Figure 8 shows the latency breakdown. First, we validate
that our own implementation of DeathStarBench on Rust is
a faithful re-implementation. We can see that the original Go
implementation and our Rust implementation have similar
latency. Moreover, the amount of latency spent in gRPC is
similar. Second, mRPC with a null policy outperforms by
2.5x gRPC with a sidecar proxy in average end-to-end latency.
§A.2 contains more details about the tail latency and the
scenario without a sidecar.

Masstree analytics. We also evaluate the performance of
Masstree [56], an in-memory key-value store, over both mRPC
and eRPC [39] using RDMA. We follow the exact same work-
load setup used in eRPC, which contains 99% 1I/O-bounded
point GET request and 1% CPU-bounded range SCAN request.
‘We run the Masstree server on one machine and run the client
on another machine. Both the server and the client use 10
threads, with each client thread using 16 concurrent requests.
The test runs for 60 seconds. The result in Table 3 shows that
eRPC outperforms mRPC, which makes sense since eRPC
is a well-designed library implementation that is focused on
high performance. mRPC enables many other manageability
features in exchange for a slight reduction in performance. In
this case, using mRPC instead of eRPC means that median
latency increases by 34% and throughput reduces by 20%.

7.5 Benefits of Advanced Manageability Features

Next, we demonstrate the performance benefits of having
centralized RPC management, through two advanced manage-
ability features that we developed (see §5). We use synthetic
workloads to test the advanced manageability features.

Latency App B/W App
P95 Latency P99 Latency Bandwidth

w/o QoS 45.1ps 54.6 us 22.2 Gbps
w/ QoS 19.5 us 21.8 ps 22.0 Gbps

Table 4: Global QoS: Performance of latency- and bandwidth-
sensitive applications with and without a global QoS policy.
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Figure 9: RDMA Scheduler: Mean RPC latency with or
without RDMA scheduler. The error bars show the 95%
confidence interval.

Global RPC QoS. We enable our cross-application QoS
policy that reorders requests from multiple applications and
prioritizes small RPC quests. We set up two applications
and pin them to the same mRPC runtime. One application
is latency-sensitive, sending 32-byte RPC requests with a
single RPC in-flight; the other is bandwidth-sensitive, sending
32 KB requests with 64 concurrent RPCs. We measure the tail
latency for the latency-sensitive application and the utilized
bandwidth of the bandwidth-sensitive one.

Table 4 shows the result. Without the QoS policy, the
bandwidth-sensitive application has a high bandwidth
utilization; however, the latency-sensitive application suffers
from a high tail latency. With the QoS policy in place, the
small requests from the latency-sensitive application get
higher priority and are sent first, improving P99 latency
from 54.6 ps to 21.8 ps. Since small RPC requests consume
negligible bandwidth, it barely affects the bandwidth-sensitive
application (less than a 1% bandwidth drop).

RDMA Scheduler. Our RDMA scheduler batches small RPC
requests into (at most) 16KB messages and sends requests us-
ing a single RMDA operation to reduce the load on the RDMA
NIC. Our synthetic workload is based on BytePS [37], which
uses RDMA for distributed deep learning. To synchronize a
tensor to/from a server, BytePS prepends an 8-byte key and ap-
pends a 4-byte length to describe the tensor. The three disjoint
memory blocks are placed in a scatter-gather list and submitted
to the NIC, resulting in a small-large-small message pattern
that triggers a performance anomaly [49]. This message
pattern is quite common in real applications, as programs often
need to describe a large payload with a small piece of metadata.
We emulate BytePS’s RPC request pattern and generate RPCs
from three widely-used models: MobileNet, EfficientNetBO,
and InceptionV3 [31, 89, 90]. Each RPC call consists of an



8-byte key, a payload of tensor, and a 4-byte length. We use
a single thread to make RPCs. Figure 9 shows the average
RPC latency. The RDMA scheduler provides 30-90% latency
improvement. This improvement differs for different neural
networks, because of different RDMA message patterns.

8 Related Work

Fast RPC implementations. Optimizing RPC has a long
history. Birrell and Nelson’s early RPC design [10] includes
generating bindings via a compiler, interfacing with transport
protocols, and various optimizations (e.g., implicit ACK).
Bershad et al. showed how to use shared-memory queues
to efficiently pass RPC messages between processes on the
same machine [8]. mRPC’s shared-memory region leverages
this idea but extends it to allow for marshalling code to be
applied after policy enforcement. A similar use of shared-
memory queues can be found with recent Linux support for
asynchronous system calls [3] combined with scatter-gather
I/O [54]; unlike traditional system calls, however, mRPC
protocol descriptions can be defined at runtime.

Another line of work uses RDMA to speed network
RPCs[13,39,41,63,87,88]. These studies assume direct ap-
plication access to network hardware and are thus susceptible
to RDMA'’s security weaknesses [79]. mRPC leverages ideas
from RDMA RPC research but in a way that is compatible with
policy enforcement and observability, by doing so as a service.
Another line of work reduces the cost of marshalling, by using
alternative formats [2,9,11,20,38,66,78,92] or designing hard-
ware accelerators [35,43,76,97]. This work is largely orthogo-
nal to our goal of removing unnecessary marshalling steps but
could be applied to further improve mRPC performance.

Fast network stacks. Building efficient host network stacks
is a popular research topic. MegaPipe [28], mTCP [36],
Arrakis [73], IX [5], eRPC [39], and Demikernel [99] advocate
building the network stack as a user-level library, bypassing
the kernel for performance. In these systems, an application
directly accesses the network interface, but they assume
policy can be enforced by the network hardware and are thus
vulnerable if the hardware has security weaknesses. mRPC
can interpose policy on any RPC. Like mRPC, Snap [58]
and TAS [45] implement the network stack as a service, but
they stop at layer 4 (TCP and UDP) rather than layer 7 (RPC).
Application RPC stubs must marshal data into shared memory
queues to use Snap or TAS. Flexible policy engines are a key
feature of Snap, but because Snap operates at layer 4, it can only
apply layer 7 policies by unmarshalling and re-marshalling
RPC data. A fast network stack like mRPC can also be
implemented directly in the kernel. LITE [95] implements
RDMA operations as system calls inside the kernel to improve
manageability, and Shenango [69] interposes a specialized
kernel packet scheduler for network messages.

Fast network proxies. There is a long line of work on im-
proving the performance of network proxies [33, 34,44,46,47,

51,57,60,70,71,74,75,85,100]. Much of this work considers
the general case of a standalone proxy. Our work differs in
two ways. First, our proposed technique is only for RPC traffic
rather than generalized TCP traffic. Second, we co-design the
application library stub and proxy, and thus, both must be co-
located on the same machine for our shared memory queues to
function. In today’s sidecar proxies (our baseline), this assump-
tion holds, but it does not hold for generalized network proxies.

Live upgrades of system software. Being able to update
system software without disrupting or restarting applications
is key to achieving end-to-end high availability. Snap [58]
provides live upgrade of the network stack running as a proxys;
Bento [61] provides similar functionality for kernel-resident
file systems. Relative to these systems, mRPC upgrades are
more fine-grained. For example, Snap targets a maximum
outage during upgrades of 200 milliseconds, by spawning
another instance of itself and moving all connections to the new
process. By contrast, our goal is near instantaneous changes
and upgrades to RPC protocol definitions, policy engines, and
marshalling code. We accomplish this by keeping the control
plane intact and performing updates by loading and unloading
dynamic libraries. eBPF is a Linux kernel extensibility
mechanism that supports dynamic updates [17]; unlike eBPF,
mRPC can dynamically change the execution graph of policy
engines as well as the individual engines themselves.

9 Conclusion

Remote procedure call has become the de facto abstraction
for building distributed applications in datacenters. The
increasing demand for manageability makes today’s RPC
libraries inadequate. Inserting a sidecar proxy into the network
datapath allows for manageability but slows down RPC
substantially due to redundant marshalling and unmarshalling.
We present mRPC, a novel architecture to implement RPC
as a managed service to achieve both high performance and
manageability. mRPC eliminates the redundant marshalling
overhead by applying policy to RPC data before marshalling
and only copying data when necessary for security. This
new architecture enables live upgrade of RPC processing
logic and new RPC scheduling and transport methods
to improve performance. We have performed extensive
evaluations through a set of micro-benchmarks and two real
applications to demonstrate that mRPC enables a unique
combination of high performance, policy flexibility, security,
and application-level availability. Our source code is available
athttps://github.com/phoenix-dataplane/phoenix.
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Figure 10: Microbenchmark [Large RPC bandwidth]:
Comparison of large RPC bandwidth where we use HTTP/2
and protobuf (PB) marshalling for mRPC, on TCP transport.
The error bars show the 95% confidence interval, but they are
too small to be visible.
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Figure 11: Microbenchmark [RPC rate and scalability]:
Comparison of small RPC rate and CPU scalability where we
use HTTP/2 and protobuf (PB) marshalling for mRPC, on TCP
transport. The error bars show the 95% confidence interval.

A Appendix
A.1 mRPC with Full gRPC-style Marshalling

As gRPC uses protobuf [78] for encoding and HTTP/2 as
the payload carrier, it has a memory copying and HTTP/2
framing cost. On the other hand, mRPC is agnostic to the
marshalling format. Although mRPC’s default marshalling is
zero-copy and is generally faster than gRPC-style marshalling,
our main goal of the paper is to show that we can eliminate
the redundant (un)marshalling steps while enabling network
policies and observability for RPC traffic.

To isolate the performance benefits of using zero-copy
marshalling and reducing the number of (un)marshalling steps,
we evaluate mRPC with full gRPC-style marshalling (protobuf
+HTTP/2). We implement an mRPC variant that applies encod-
ing (decoding) code generated by the protobuf compiler and
HTTP/2 framing for inter-host mRPC service communication.

We conduct the same large RPC goodput experimentin §7.1.
The results are presented in Figure 10. We find that mRPC
achieves performance comparable to gRPC after switching to
using protobuf + HTTP/2. With full gRPC marshalling, mRPC
still performs 2.6x and 3.7x as fast as gRPC + Envoy in
terms of goodput and goodput per core. This is because mRPC
reduces the number of (un)marshalling steps. The small RPC
rate and scalability of mRPC with gRPC marshalling is also
shown in Figure 11. Since encoding small RPCs with protobuf
is relatively fast, the trend to the rate and scalability is similar
to Figure 5a.
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Figure 12: DeathStarBench: P99 latency of in-application
processing and network processing of microservices, respec-
tively. gRPC with Envoy and mRPC are compared. A null
policy is applied for mRPC.

[ Network
vz App

2]

E67 mm grPC (Go)

3| B GRRC (Rust)

€ 4| == mRPC

Q

5 %%
C

s W iz

§0 géo rate prdfile search frontend

Figure 13: DeathStarBench: Mean latency of gRPC without
proxy and mRPC.

@

€ 67 mm gRPC (Go) 3 Network

2 | B gRPC (Rust) App
41 =3 mrPC %
0 ‘ % ' %

geo rate prdfile search frontend

P99 Latency
N

Figure 14: DeathStarBench: P99 latency of in-application
processing and network processing of microservices, respec-
tively. gRPC without proxy and mRPC are compared.
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Figure 15: DeathStarBench: Peak memory usages of different
services. gRPC without proxy and mRPC are compared.

A.2 Extended Evaluation for DeathStarBench

We report the P99 latency of DeathStarBench in Figure 12,
comparing gRPC with Envoy and mRPC. The result is similar
to the comparison of median latency in §7.4. mRPC speeds up
gRPC+Envoy by 2.1 in terms of end-to-end P99 tail latency.

We also evaluate gRPC without proxy and mRPC without
any policy enforced. Figure 13 and Figure 14 show the
results for mean latency and P99 tail latency. We observe
that mRPC speeds up gRPC by 1.7x and 1.6 %, in terms of
mean latency and P99 tail latency. Communication costs
are substantial in the DeathStarBench applications, and thus
reducing the communication latency can improve end-to-end
application performance. This is consistent with the original



DeathStarBench paper’s observation [23].

We further compare the memory usage of gRPC and mRPC.
The peak memory consumption of gRPC and mRPC in
DeathStarBench applications is illustrated in Figure 15. For
mRPC, we report the user application side memory usage,
which also includes all the memory pages shared with the
mRPC service. We observe that mRPC does not incur notable
memory overhead compared to gRPC. On the other hand, we
find a small and constant memory footprint of mRPC service
across all machines at around 9 MB.
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